Relation Classification via Multi-Level Attention CNNs

نویسندگان

  • Linlin Wang
  • Zhu Cao
  • Gerard de Melo
  • Zhiyuan Liu
چکیده

Relation classification is a crucial ingredient in numerous information extraction systems seeking to mine structured facts from text. We propose a novel convolutional neural network architecture for this task, relying on two levels of attention in order to better discern patterns in heterogeneous contexts. This architecture enables endto-end learning from task-specific labeled data, forgoing the need for external knowledge such as explicit dependency structures. Experiments show that our model outperforms previous state-of-the-art methods, including those relying on much richer forms of prior knowledge.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Attentive Convolution

In NLP, convolution neural networks (CNNs) have benefited less than recurrent neural networks (RNNs) from attention mechanisms. We hypothesize that this is because attention in CNNs has been mainly implemented as attentive pooling (i.e., it is applied to pooling) rather than as attentive convolution (i.e., it is integrated into convolution). Convolution is the differentiator of CNNs in that it ...

متن کامل

Extracting Drug-Drug Interactions with Attention CNNs

We propose a novel attention mechanism for a Convolutional Neural Network (CNN)-based Drug-Drug Interaction (DDI) extraction model. CNNs have been shown to have a great potential on DDI extraction tasks; however, attention mechanisms, which emphasize important words in the sentence of a target-entity pair, have not been investigated with the CNNs despite the fact that attention mechanisms are s...

متن کامل

Convolutional Neural Network Language Models

Convolutional Neural Networks (CNNs) have shown to yield very strong results in several Computer Vision tasks. Their application to language has received much less attention, and it has mainly focused on static classification tasks, such as sentence classification for Sentiment Analysis or relation extraction. In this work, we study the application of CNNs to language modeling, a dynamic, seque...

متن کامل

High-Level Music Descriptor Extraction Algorithm Based on Combination of Multi-Channel CNNs and LSTM

Although Convolutional Neural Networks (CNNs) and Long Short Term Memory (LSTM) have yielded impressive performances in a variety of Music Information Retrieval (MIR) tasks, the complementarity among the CNNs of different architectures and that between CNNs and LSTM are seldom considered. In this paper, multichannel CNNs with different architectures and LSTM are combined into one unified archit...

متن کامل

Multiple Range-Restricted Bidirectional Gated Recurrent Units with Attention for Relation Classification

Most of neural approaches to relation classification have focused on finding short patterns that represent the semantic relation using Convolutional Neural Networks (CNNs) and those approaches have generally achieved better performances than using Recurrent Neural Networks (RNNs). In a similar intuition to the CNN models, we propose a novel RNN-based model that strongly focuses on only importan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016